Jumat, 02 Desember 2011

sistem pernafasan

SISTEM PERNAFASAN

Sistem pernapasan atau sistem respirasi
sistem organ yang digunakan untuk pertukaran gas. Pada hewan berkaki empat, sistem pernapasan umumnya termasuk saluran yang digunakan untuk membawa udara ke dalam paru-paru di mana terjadi pertukaran gas. Diafragma menarik udara masuk dan juga mengeluarkannya. Berbagai variasi sistem pernapasan ditemukan pada berbagai jenis makhluk hidup. Bahkan pohon pun memiliki sistem pernapasan.
Pernafasan terdiri dari pernafasan dada dan pernafasan perut:
  • Pernapasan dada adalah pernafasan yang melibatkan otot antartulang rusuk. Mekanismenya yaitu :
  1. Fase inspirasi yaitu berupa berkontraksinya otot antartulang rusuk sehingga rongga dada membesar, akibatnya tekanan dalam rongga dada menjadi lebih kecil daripada tekanan di luar sehingga udara luar yang kaya oksigen masuk.
  2. Fase ekspirasi merupakan fase relaksasi atau kembalinya otot antara tulang rusuk ke posisi semula yang dikuti oleh turunnya tulang rusuk sehingga rongga dada menjadi kecil. Sebagai akibatnya, tekanan di dalam rongga dada menjadi lebih besar daripada tekanan luar, sehingga udara dalam rongga dada yang kaya karbon dioksida keluar.

  • Pernapasan perut adalah pernafasan yang melibatkan otot diafragma. Mekanismenya yaitu;
  1. Fase inspirasi yaitu berupa berkontraksinya otot diafragma sehingga rongga dada membesar, akibatnya tekanan dalam rongga dada menjadi lebih kecil daripada tekanan di luar sehingga udara luar yang kaya oksigen masuk.
  2. Fase ekspirasi merupakan fase relaksasi atau kembalinya otot diaframa ke posisi semula yang dikuti oleh turunnya tulang rusuk sehingga rongga dada menjadi kecil. Sebagai akibatnya, tekanan di dalam rongga dada menjadi lebih besar daripada tekanan luar, sehingga udara dalam rongga dada yang kaya karbon dioksida keluar.
Sistem pernafasan manusia dimulai dari hidung, faring, trakea, bronkus, dan paru-paru(bronkiolus dan alveolus).
Hidung merupakan organ pertama yang dilalui oleh udara. Di dalam rongga hidung terdapat rambut-rambut dan selaput lendir, yang berfungsi sebagai penyaring, penghangat dan pengatur kelembaban udara yang akan masuk keparu-paru.  

Faring (tekak) merupakan persimpangan antara kerongkongan dan tenggorokan. Terdapat katup yang disebut epiglotis (anak tekak) berfungsi sebagai pengatur jalan masuk ke kerongkongan dan tenggorokan.
                                  
Laring biasanya disebut sebagai "kotak suara," adalah struktur berbentuk tabung yang terdiri dari sistem yang kompleks dari otot, tulang rawan, dan jaringan ikat. laring ini tergantung dari tulang hyoid, yang signifikan dalam hal itu adalah satu-satunya tulang dalam tubuh yang tidak mengartikulasikan dengan tulang lainnya.
                                       
Trakea (Batang tenggorok) berupa pipa yang dindingnya terdiri atas 3 lapisan, yaitu lapisan luar terdiri atas jaringan ikat, lapisan tengah terdiri atas otot polos dan cincin tulang rawan, dan lapisan dalam terdiri atas jaringan epitelium besilia. Terletak di leher bagian depan kerongkongan.
                                               
Bronkus merupakan percabangan trakea yang menuju paru-paru kanan dan kiri. Struktur bronkhus sama dengan trakea, hanya dindingnya lebih halus. Kedudukan bronkhus kiri lebih mendatar dibandingkan bronkhus kanan, sehingga bronkhus kanan lebih mudah terserang penyakit.
                                            

Bronkheolus adalah percabangan dari bronkhus, saluran ini lebih halus dan dindingnya lebih tipis. Bronkheolus kiri berjumlah 2, sedangkan kanan berjumlah 3, percabangan ini akan membentuk cabang yang lebih halus seperti pembuluh.
                                     
Alveolus berupa saluran udara buntu membentuk gelembung-gelembung udara, dindingnya tipis setebal selapis sel, lembab dan berlekatan dengan kapiler darah. Alveolus berfungsi sebagai permukaan respirasi, luas total mencapai 100 m2 (50 x luas permukaan tubuh) cukup untuk melakukan pertukaran gas ke seluruh tubuh.
                              

Paru-paru berjumlah sepasang terletak di dalam rongga dada kiri dan kanan. Paru-paru kanan memiliki 3 lobus (gelambir), sedangkan paru-paru kiri memiliki 2 lobus (gelambir). Di dalam paru-paru ini terdapat alveolusyang berjumlah ± 300 juta buah. Bagian luar paru-paru dibungkus oleh selaput pleura untuk melindungi paru-paru dari gesekan ketika bernapas, berlapis 2 dan berisi cairan.
                                            

Alat Respirasi pada Serangga

       Corong hawa (trakea) adalah alat pernapasan yang dimiliki oleh serangga dan arthropoda lainnya. Pembuluh trakea bermuara pada lubang kecil yang ada di kerangka luar (eksoskeleton) yang disebut spirakel. Spirakel berbentuk pembuluh silindris yang berlapis zat kitin, dan terletak berpasangan pada setiap segmen tubuh. Spirakelmen punyai katup yang dikontrol oleh otot sehingga membuka dan menutupnya spirakel terjadi secara teratur. Pada umumnya spirakel terbuka selama serangga terbang, dan tertutup saat serangga beristirahat.

        Oksigen dari luar masuk lewat spirakel. Kemudian udara dari spirakel menuju pembuluh-pembuluh trakea dan selanjutnya pembuluh trakea bercabang lagi menjadi cabang halus yang disebut trakeolus sehingga dapat mencapai seluruh jaringan dan alat tubuh bagian dalam. Trakeolus tidak berlapis kitin, berisi cairan, dan dibentuk oleh sel yang disebut trakeoblas. Pertukaran gas terjadi antara trakeolus dengan sel-sel tubuh. Trakeolus ini mempunyai fungsi yang sama dengan kapiler pada sistem pengangkutan (transportasi) pada vertebrata.

Mekanisme pernapasan pada serangga, misalnya belalang, adalah sebagai berikut :
       Jika otot perut belalang berkontraksi maka trakea mexrupih sehingga udara kaya COZ keluar. Sebaliknya, jika otot perut belalang berelaksasi maka trakea kembali pada volume semula sehingga tekanan udara menjadi lebih kecil dibandingkan tekanan di luar sebagai akibatnya udara di luar yang kaya 0
2 masuk ke trakea.

        Sistem trakea berfungsi mengangkut O
2 dan mengedarkannya ke seluruh tubuh, dan sebaliknya mengangkut C02 basil respirasi untuk dikeluarkan dari tubuh. Dengan demikian, darah pada serangga hanya berfungsi mengangkut sari makanan dan bukan untuk mengangkut gas pernapasan.


        Di bagian ujung trakeolus terdapat cairan sehingga udara mudah berdifusi ke jaringan. Pada serangga air seperti jentik nyamuk udara diperoleh dengan menjulurkan tabung pernapasan ke permukaan air untuk mengambil udara.

          Serangga air tertentu mempunyai gelembung udara sehingga dapat menyelam di air dalam waktu lama. Misalnya, kepik Notonecta sp. mempunyai gelembung udara di organ yang menyerupai rambut pada permukaan ventral. Selama menyelam, O
2 dalam gelembung dipindahkan melalui sistem trakea ke sel-sel pernapasan.

          Selain itu, ada pula serangga yang mempunyai insang trakea yang berfungsi menyerap udara dari air, atau pengambilan udara melalui cabang-cabang halus serupa insang. Selanjutnya dari cabang halus ini oksigen diedarkan melalui pembuluh trakea.
 
Burung

       Burung mempunyai saluran pernapasan yang terdir atas lubang hidung, trakea, bronkus dan paru-apru. Pada bagian bawah trakea terdapat alat suara disebut siring. Burung mempunyai alat bantu pernapasan yang disebut pundi-pundi udara yang berhubungan dengan paru-paru. Fungsi pundi-pundi udara antara lain untuk membantu pernapasan dan membantu membesarkan rongga siring sehingga dapat memperkeras suara. Proses pernapasan pada burung terjadi sebagai berikut.
 Jika otot tulang rusuk berkontaksi, tulang rusuk bergerak ke arah depan dan tulang dada bergerak ke bawah. Rongga dada menjadi besar dan tekanannya menurun. Hal ini menyebabkan udara masuk ke dalam paru-paru dan selanjutnya masuk ke dalam pundi-pundi udara. Pada waktu otot tulang rusuk mengendur, tulang rusak bergerak ke arah belakang dan tulang dada bergerak ke arah atas. Rongga dada mengecil dan tekanannya menjadi besar, mengakibatkan udara keluar dari paru-paru. Demikian juga udara dari pundi-pundi udara keluar melalui paru-apru. Pengambilan oksigen oleh paru-paru terjadi pada waktu inspirasi dan ekspirasi. Pertukaran gas hanya terjadi di dalam paru-paru.
Katak

     Katak dalam daur hidupnya mengalami metamorfosis atau perubahan bentuk. Pada waktu muda berupa berudu dan setelah dewasa hidup di darat. Mula-nula berudu bernapas dengan insang luar yang terdapat di bagian belakang kepala. Insang tersebut selalu bergetar yang mengakibatkan air di sekitar insang selalu berganti. Oksigen yang terlarut dalam air berdifusi di dalam pembuluh kapiler darah yang terdapat dalam insang.

      Setelah beberapa waktu insang luar ini akan berubah menjadi insang dalam dengan cara terbentuknya lipatan kulit dari arah depan ke belakang sehingga menutupi insang luar. Katak dewasa hidup di darat, pernapasannya dengan paru-paru. Selain dengan paru-paru, oksigen dapat berdifusi dalam rongga mulut yaitu melalui selaput rongga mulut dan juga melalui kulit.

        Pada katak, oksigen berdifusi lewat selaput rongga mulut, kulit, dan paru-paru. Kecuali pada fase berudu bernapas dengan insang karena hidupnya di air. Selaput rongga mulut dapat berfungsi sebagai alat pernapasan karma tipis dan banyak terdapat kapiler yang bermuara di tempat itu. Pada saat terjadi gerakan rongga mulut dan faring, Iubang hidung terbuka dan glotis tertutup sehingga udara berada di rongga mulut dan berdifusi masuk melalui selaput rongga mulut yang tipis. Selain bernapas dengan selaput rongga mulut, katak bernapas pula dengan kulit, ini dimungkinkan karma kulitnya selalu dalam keadaan basah dan mengandung banyak kapiler sehingga gas pernapasan mudah berdifusi.

Oksigen yang masuk lewat kulit akan melewati vena kulit (vena kutanea) kemudian dibawa ke jantung untuk diedarkan ke seluruh tubuh. Sebaliknya karbon dioksida dari jaringan akan di bawa ke jantung, dari jantung dipompa ke kulit dan paru-paru lewat arteri kulit pare-paru (arteri pulmo kutanea). Dengan demikian pertukaran oksigen dan karbon dioksida dapat terjadi di kulit. 

Reptil

        Reptil bernapas dengan paru-paru. Pengambilan oksigen dan pengeluaran karbondioksida terjadi di dalam paru-paru. Keluar masuknya udara dari dan keluar paru-paru karena adanya gerakan-gerakan dari tulang rusuk. Saluran pernapasan terdiri dari lubang hidung, trakea, bronkus dan paru-paru.



Protozoa

           Protozoa tidak mempunyai alat pernapasan khusus untuk memperoleh oksigen dan mengeluarkan karbon dioksida. Oksigen masuk ke dalam sel malalui selaput plasma secara difusi. Demikian juga karbon dioksida dari dalam sel deikeluarkan melalui selaput plasma.

Cacing tanah

             Cacing tanah tidak mempunyai alat pernapasan khusus. Kulitnya banyak mengandung kelenjar lendir, sehingga kulit tubuhnya menjadi basah dan lembab. Oksigen yang diperlukan oleh tubuhnya masuk melalui seluruh permukaan tubuh secara difusi. Pengeluaran karbon dioksida juga melalu permukaan tubuh.

Ikan
          Ikan mas bernapas dengan insang yang terdapat pada sisi kiri dan kanan kepala. Masing-masing mempunyai empat buah insang yang ditutup oleh tutup insang (operkulum). Proses pernapasan pada ikan adalah dengan cara membuka dan menutup mulut secara bergantian dengan membuka dan menutup tutup insang. Pada waktu mulut membuka, air masuk ke dalam rongga mulut sedangkan tutup insang menutup. Oksigen yang terlarut dalam air masuk berdifusi ke dalam pembuluh kapiler darah yang terdapat dalam insang. Dan pada waktu menutup, tutup insang membuka dan air dari rongga mulut keluar melalui insang. Bersamaan dengan keluarnya air melalui insang, karbondioksida dikeluarkan. Pertukaran oksigen dan karbondioksida terjadi pada lembaran insang.

      
Serangga mempunyai sitem pernapasan yang disebut sistem trakea. Oksigen yang dibutuhkan oleh sel-sel tubuh untuk oksidasi tidak diedarkan oleh darah tetapi diedarkan oleh trakea yang bercabang-cabang ke seluruh tubuh. Cabang kecil trakea yang menembus jaringan tubuh disebut trakeolus. Masuknya udara untuk pernapasan tidak melalui mulut melainkan melalui stigma (spirakel).

         Proses pernapasan pada serangga terjadi sebagai berikut. Dengan adanya kontraksi otot-otot tubuh, maka tubuh serangga menjadi mengembang dan mengempis secara teratur. Pada waktu tubuh serangga mengembang, udara masuk melalui stigma, selanjutnya masuk ke dalam trakea, kemudian ke dalam trakeolus dan akhirnya masuk ke dalam sel-sel tubuh. Oksigen berdifusi ke dalam sel-sel tubuh. Karbondioksida hasil pernapasan dikeluarkan melalui sistem trakea juga yang akhirnya dikeluarkan melalui stigma pada waktu tubuh serangga mengempis. 
         
            Mekanisme pernapasan pada ikan melalui 2 tahap, yakni inspirasi dan ekspirasi. Pada fase inspirasi, 02 dari air masuk ke dalam insang kemudian 02 diikat oleh kapiler darah untuk dibawa ke jaringan-jaringan yang membutuhkan. Sebaliknya pada fase ekspirasi, C02 yang dibawa oleh darah dari jaringan akan bermuara ke insang dan dari insang diekskresikan keluar tubuh. 

Sistem tubuh manusia
Organ dalam
Nama-nama umum organ dalam (secara alfabetis) :


1. APPENDIKS
Umbai cacing atau apendiks adalah organ tambahan pada usus buntu. Infeksi pada organ ini disebut apendisitis atau radang umbai cacing. Apendisitis yang parah dapat menyebabkan apendiks pecah dan membentuk nanah di dalam rongga abdomen atau peritonitis (infeksi rongga abdomen).
Dalam anatomi manusia, umbai cacing atau dalam bahasa Inggris, vermiform appendix (atau hanya appendix) adalah hujung buntu tabung yang menyambung dengan caecum.
Umbai cacing terbentuk dari caecum pada tahap embrio. Dalam orang dewasa, Umbai cacing berukuran sekitar 10 cm tetapi bisa bervariasi dari 2 sampai 20 cm. Walaupun lokasi apendiks selalu tetap, lokasi ujung umbai cacing bisa berbeda - bisa di retrocaecal atau di pinggang (pelvis) yang jelas tetap terletak di peritoneum.
Banyak orang percaya umbai cacing tidak berguna dan organ vestigial (sisihan), sebagian yang lain percaya bahwa apendiks mempunyai fungsi dalam sistem limfatik. Operasi membuang umbai cacing dikenal sebagai appendektomi.
Penyakit apendiks biasa bagi manusia adalah :  Apendisitis

2.USUS DUA BELAS JARI
Usus dua belas jari atau duodenum adalah bagian dari usus halus yang terletak setelah lambung dan menghubungkannya ke usus kosong (jejunum). Bagian usus dua belas jari merupakan bagian terpendek dari usus halus, dimulai dari bulbo duodenale dan berakhir di ligamentum Treitz.
Usus dua belas jari merupakan organ retroperitoneal, yang tidak terbungkus seluruhnya oleh selaput peritoneum. pH usus dua belas jari yang normal berkisar pada derajat sembilan.Usus dua belas jari bertanggung jawab untuk menyalurkan makanan ke usus halus. Secara histologis, terdapat kelenjar Brunner yang menghasilkan lendir. Dinding usus dua belas jari tersusun atas lapisan-lapisan sel yang sangat tipis yang membentuk mukosa otot.

3. ESOFAGUS
Esofagus (dari bahasa Yunani: οiσω, oeso - "membawa", dan έφαγον, phagus - "memakan") atau kerongkongan adalah tabung (tube) berotot pada vertebrata yang dilalui sewaktu makanan mengalir dari bagian mulut ke dalam lambung. Makanan berjalan melalui esofagus dengan menggunakan proses peristaltik.
Esofagus bertemu dengan faring – yang menghubungkan esofagus dengan rongga mulut – pada ruas ke-6 tulang belakang. Menurut histologi, esofagus dibagi menjadi tiga bagian: bagian superior (sebagian besar adalah otot rangka), bagian tengah (campuran otot rangka dan otot halus), serta bagian inferior (terutama terdiri dari otot halus).
4.GINJAL
Ginjal adalah organ ekskresi dalam vertebrata yang berbentuk mirip kacang. Sebagai bagian dari sistem urin, ginjal berfungsi menyaring kotoran (terutama urea) dari darah dan membuangnya bersama dengan air dalam bentuk urin. Cabang dari kedokteran yang mempelajari ginjal dan penyakitnya disebut nefrologi.Manusia memiliki sepasang ginjal yang terletak di belakang perut atau abdomen. Ginjal ini terletak di kanan dan kiri tulang belakang, di bawah hati dan limpa. Di bagian atas (superior) ginjal terdapat kelenjar adrenal (juga disebut kelenjar suprarenal).
Ginjal bersifat retroperitoneal, yang berarti terletak di belakang peritoneum yang melapisi rongga abdomen. Kedua ginjal terletak di sekitar vertebra T12 hingga L3. Ginjal kanan biasanya terletak sedikit di bawah ginjal kiri untuk memberi tempat untuk hati.
Sebagian dari bagian atas ginjal terlindungi oleh iga ke sebelas dan duabelas. Kedua ginjal dibungkus oleh dua lapisan lemak (lemak perirenal dan lemak pararenal) yang membantu meredam goncangan.
Pada orang dewasa, setiap ginjal memiliki ukuran panjang sekitar 11 cm dan ketebalan 5 cm dengan berat sekitar 150 gram. Ginjal memiliki bentuk seperti kacang dengan lekukan yang menghadap ke dalam. Di tiap ginjal terdapat bukaan yang disebut hilus yang menghubungkan arteri renal, vena renal, dan ureter.

5. HATI
Hati merupakan kelenjar terbesar di dalam tubuh, terletak dalam rongga perut sebelah kanan, tepatnya di bawah diafragma. Berdasarkan fungsinya, hati juga termasuk sebagai alat ekskresi. Hal ini dikarenakan hati membantu fungsi ginjal dengan cara memecah beberapa senyawa yang bersifat racun dan menghasilkan anomia, urea, dan asam urat dengan memanfaatkan nitrogen dari asam amino. Proses pemecahan senyawa racun oleh hati disebut proses detoksifikasi.
Sebagai kelenjar, hati menghasilkan empedu yang mencapai ½ liter setiap hari. Empedu berasal dari hemoglobin sel darah merah yang telah tua. Empedu merupakan cairan kehijauan dan terasa pahit. Zat ini disimpan di dalam kantong empedut . Empedu mengandung kolestrol, garam mineral, garam empedu, pigmen bilirubin, dan biliverdin. Empedu yang disekresikan berfungsi untuk mencerna lemak, mengaktifkan lipase, membantu daya absorpsi lemak di usus, dan mengubah zat yang tidak larut dalam air menjadi zat yang larut dalam air.
Sel-sel darah merah dirombak di dalam hati. Hemglobin yang terkandung di dalamnya dipecah menjadi zat besi, globin, dan heme. Zat besi dan globin didaur ulang, sedangkan heme dirombak menjadi bilirubin dan biliverdin yang bewarna hijau kebiruan. Di dalam usus, zat empedu ini mengalami oksidasi menjadi urobilin sehingga warna feses dan urin kekuningan.
Apabila saluran empedu di hati tersumbat, empedu masuk ke peredaran darah sehingga kulit penderita menjadi kekuningan. Orang yang demikian dikatakan menderita penyakit kuning.
Hati juga menghasilkan enzim arginase yang dapat mengubah arginin menjadi ornintin dan urea. Ornintin yang terbentuk dapat mengikat NH³ dan CO² yang bersifat racun.
Fungsi lain dari hati adalah mengubah zat buangan dan bahan racun untuk dikeluarkan dalam empedu dan urin, serta mengubah glukosa yang diambil dari darah menjadi glikogen yang disimpan di sel-sel hati. Glikogen akan dirombak kembali menjadi glukosa oleh enzim amilase dan dilepaskan ke darah sebagai respons meningkatnya kebutuhan energi oleh tubuh.
6.JANTUNG
Jantung (bahasa Latin cor) adalah sebuah rongga, rongga, organ berotot yang memompa darah lewat pembuluh darah oleh kontraksi berirama yang berulang. Istilah kardiak berarti berhubungan dengan jantung, dari Yunani cardia untuk jantung. Jantung adalah salah satu organ yang berperan dalam sistem peredaran darah.
Ukuran jantung manusia kurang lebih sebesar kepalan tangan seorang laki-laki dewasa. Jantung adalah satu otot tunggal yang terdiri dari lapisan endothelium. Jantung terletak di dalam rongga thoracic, di balik tulang dada/sternum. Struktur jantung berbelok ke bawah dan sedikit ke arah kiri.
Jantung hampir sepenuhnya diselubungi oleh paru-paru, namun tertutup oleh selaput ganda yang bernama perikardium, yang tertempel pada diafragma. Lapisan pertama menempel sangat erat kepada jantung, sedangkan lapisan luarnya lebih longgar dan berair, untuk menghindari gesekan antar organ dalam tubuh yang terjadi karena gerakan memompa konstan jantung.
Jantung dijaga di tempatnya oleh pembuluh-pembuluh darah yang meliputi daerah jantung yang merata/datar, seperti di dasar dan di samping. Dua garis pembelah (terbentuk dari otot) pada lapisan luar jantung menunjukkan di mana dinding pemisah di antara sebelah kiri dan kanan serambi (atrium) & bilik (ventrikel).
Secara internal, jantung dipisahkan oleh sebuah lapisan otot menjadi dua belah bagian, dari atas ke bawah, menjadi dua pompa. Kedua pompa ini sejak lahir tidak pernah tersambung. Belahan ini terdiri dari dua rongga yang dipisahkan oleh dinding jantung. Maka dapat disimpulkan bahwa jantung terdiri dari empat rongga, serambi kanan & kiri dan bilik kanan & kiri.
Dinding serambi jauh lebih tipis dibandingkan dinding bilik karena bilik harus melawan gaya gravitasi bumi untuk memompa dari bawah ke atas, khususnya di aorta, untuk memompa ke seluruh bagian tubuh yang memiliki pembuluh darah. Dua pasang rongga (bilik dan serambi bersamaan) di masing-masing belahan jantung disambungkan oleh sebuah katup. Katup di antara serambi kanan dan bilik kanan disebut katup trikuspidalis atau katup berdaun tiga. Sedangkan katup yang ada di antara serambi kiri dan bilik kiri disebut katup mitralis atau katup berdaun dua.
Pada saat berdenyut, setiap ruang jantung yang mengendur dan terisi darah disebut diastol . Selanjutnya jantung berkontraksi dan memompa darah keluar dari ruang jantung disebut sistol . Kedua serambi mengendur dan berkontraksi secara bersamaan, dan kedua bilik juga mengendur dan berkontraksi secara bersamaan.
Darah yang kehabisan oksigen dan mengandung banyak karbondioksida (darah kotor) dari seluruh tubuh mengalir melalui dua vena berbesar (vena kava) menuju ke dalam serambi kanan. Setelah atrium kanan terisi darah, dia akan mendorong darah ke dalam bilik kanan.

Darah dari bilik kanan akan dipompa melalui katup pulmoner ke dalam arteri pulmonalis, menuju ke paru-paru. Darah akan mengalir melalui pembuluh yang sangat kecil (kapiler) yang mengelilingi kantong udara di paru-paru, menyerap oksigen dan melepaskan karbondioksida yang selanjutnya dihembuskan.

Darah yang kaya akan oksigen (darah bersih) mengalir di dalam vena pulmonalis menuju ke serambi kiri. Peredaran darah di antara bagian kanan jantung, paru-paru dan atrium kiri disebut sirkulasi pulmoner.

Darah dalam serambi kiri akan didorong menuju bilik kiri, yang selanjutnya akan memompa darah bersih ini melewati katup aorta masuk ke dalam aorta (arteri terbesar dalam tubuh). Darah kaya oksigen ini disediakan untuk seluruh tubuh, kecuali paru-paru.
Sistem pernapasan pada hewan menyusui dan burung bekerja dengan cara yang sepenuhnya berbeda, terutama karena burung membutuhkan oksigen dalam jumlah yang jauh lebih besar dibandingkan yang dibutuhkan hewan menyusui. Sebagai contoh, burung tertentu bisa memerlukan dua puluh kali jumlah oksigen yang dibutuhkan oleh manusia. Karenanya, paru-paru hewan menyusui tidak dapat menyediakan oksigen dalam jumlah yang dibutuhkan burung. Itulah mengapa paru-paru burung diciptakan dengan rancangan yang jauh berbeda.
Pada hewan menyusui, aliran udara adalah dua arah: udara melalui jaringan saluran-saluran, dan berhenti di kantung-kantung udara yang kecil. Pertukaran oksigen-karbon dioksida terjadi di sini. Udara yang sudah digunakan mengalir dalam arah berlawanan meninggalkan paru-paru dan dilepaskan melalui tenggorokan.
Sebaliknya, pada burung, aliran udara cuma satu arah. Udara baru datang pada ujung yang satu, dan udara yang telah digunakan keluar melalui lubang lainnya. Hal ini memberikan persediaan oksigen yang terus-menerus bagi burung, yang memenuhi kebutuhannya akan tingkat energi yang tinggi.Dalam hal burung, bronkhus (cabang batang tenggorokan yang menuju paru-paru) utama terbelah menjadi tabung-tabung yang sangat kecil yang tersebar pada jaringan paru-paru. Bagian yang disebut parabronkhus ini akhirnya bergabung kembali, membentuk sebuah sistem peredaran sesungguhnya sehingga udara mengalir dalam satu arah melalui paru-paru…. Meskipun kantung-kantung udara juga terbentuk pada kelompok reptil tertentu, bentuk paru-paru burung dan keseluruhan fungsi sistem pernapasannya sangat berbeda. Tidak ada paru-paru pada jenis hewan bertulang belakang lain yang dikenal, yang mendekati sistem pada unggas dalam hal apa pun.
Aliran udara searah dalam paru-paru burung didukung oleh suatu sistem kantung udara. Kantung-kantung
ini mengumpulkan udara dan memompanya secara teratur ke dalam paru-paru. Dengan cara ini, selalu ada udara segar dalam paru-paru. Sistem pernafasan yang rumit seperti ini telah diciptakan untuk memenuhi kebutuhan burung akan jumlah oksigen yang tinggi.
Semakin tinggi seekor burung terbang maka semakin tipis/sedikit oksigen yang tersedia di udara maka paru-paru burung harus dapat memasok sejumlah besar oksigen yang dibutuhkan untuk terbang.




Biologi Sel - Protoplasma

KATA PENGANTAR


Segala puji syukur bagi Tuhan Yang Maha Kuasa yang telah menolong kami di dalam menyelesaikan makalah ini dengan penuh kemudahan. Tanpa pertolongan Dia mungkin kami tidak akan sanggup menyelesaikan makalah ini dengan baik.

Makalah ini disusun agar pembaca dapat memperluas ilmu tentang “PROTOPLASMA”, yang kami sajikan berdasarkan pengamatan dari berbagai sumber. Makalah ini kami susun dengan berbagai rintangan.
Baik itu yang datang dari diri kami sendiri maupun yang datang dari luar. Namun dengan penuh kesabaran dan terutama pertolongan dari Tuhan Yang Maha Esa akhirnya makalah ini dapat terselesaikan.

Makalah ini memuat tentang “BIOLOGI SEL” yang menjelaskan tentang “PROTOPLASMA”

Kami juga mengucapkan banyak terima kasih kepada dosen yang telah membimbing kami agar dapat menyelesaikan makalah ini.

Semoga makalah ini dapat memberikan wawasan yang lebih luas kepada pembaca. Walaupun makalah ini memiliki kelebihan dan kekurangan. Saya mohon untuk saran dan kritiknya.



Terima kasih.

                                                                                                                        KELOMPOK 5




BAB I
PENDAHULUAN

Ciri khas semua organisme adalah memiliki protoplasma, yaitu substansi majemuk yang terdiri dari berbagai bahan meliputi air, garam-garam mineral, dan banyak senyawa organik, di antaranya adalah karbohidrat, protein, dan lipid. Protoplasma bersifat pekat (kental), jernih (terang), dan koloid polifasis.
 Para cendekiawan sepakat bahwa hidup berada di dalam protoplasma, seperti yang semula dikemukakan oleh Dujardin 1835, Purkinje 1839, yang menemukan protoplasma pada hewan. Baru kemudian Mohl 1854, membawa pengertian yang sama bagi tumbuhan. Komposisi protoplasma adalah tetap, jadi bukan sebagai senyawa. Sifat-sifat kimia, fisik dan biologis protoplasma suatu jenis organisme berbeda dengan sifat kimia, fisik, dan biologis protoplasma organisme lain .
Kita membedakan benda hidup dari benda mati berdasarkan pada sifat-sifat yang dimiliki oleh protoplasma, yaitu: sebagai tempat berlangsungnya regulasi proses biokimia, tanggap terhadap rangsangan, tumbuh dan berkembang biak.
Kalau kita berbicara tentang hidup, maka pengertian di atas menjadi sama-samar bila pengertian itu diterapkan pada virus, sebab virus hanya memiliki sifat berkembang biak. Para ahli sepakat untuk menganggap bahwa virus merupakan penghubung antara benda hidup dan benda mati.
Seperti yang telah dikemukakan pada pendahuluan benda hidup dapat dibedakan dari benda mati berdasar 6 buah kriteria: yaitu: bentuk dan ukurannya, komposisi kimia, organisasi, metabolisme, iritabilitas, dan reproduksi. Berdasarkan 6 kriteria tersebut, jelas virus merupakan penghubung antara benda hidup dan benda mati, sebab sampai sekarang baru diketahui virus hanya memiliki sifat terakhir yaitu reproduksi.
Kita sepakat bahwa hidup itu ada dalam protoplasma, terbukti dari kriteria komposisi kimia, yaitu: molekul-molekul secara bersama-sama membentuk substansi hidup yang disebut protoplasma.
Tetapi kita belum mengetahui apa yang menyebabkan protoplasma itu hidup. Benda mati terdiri dari molekul-molekul, tetapi molekul-molekul tidak membentuk substansi hidup yang berupa protoplasma itu.


BAB II
LATAR BELAKANG

A. Pengertian PROTOPLASMA
             Protoplasma adalah elemen utama sebuah sel. Protoplasma bersifat pekat (kental), jernih (terang) dan koloid polifasis.  Dari reaksi reaksi kimia yang terjadi antara senyawa senyawa inilah yang mengakibatkan adanya gejala gejala kehidupan di protoplasma.Gejala kehidupan itu misalnya metabolisme , tumbuh , bergerak , berkembang biak , sirkulasi zat dll.Misalnya respirasi , fotosintesis , sintesis lemak .
 Protoplasma pada semua sel terdiri atas dua komponen utama, komponen anorganik dan  komponen organik.
  • Komponen-komponen anorganik terdiri atas air, garam-garam mineral, gas oksigen, karbon dioksida, nitrogen, dan amonia,
  • Komponen organik terutama terdiri atas karbohidrat, lipida, protein, dan beberapa komponen-komponen spesifik seperti enzim, vitamin, dan hormon.

Pada sel hewan dan tumbuhan, protoplasma mengandung sekitar:
  1. 75-85% air,
  2. 10-20% protein
  3. 2-3% lipida
  4. 1% karbohidrat
  5. dan 1% zat-zat anorganik lainnya
B.SIFAT-SIFAT PROTOPLASMA
Sifat-sifat Fisika Protoplasma
Bila protoplasma yang merupakan sistem koloid ini disinari dengan sinar lampu listrik pada suatu ruang yang gelap akan memberi efek Tyndall.
1.      Molekul-molekul (partikel) pada sistem koloid protoplasma bergerak secara zig-zag (gerak Brown (1872)). Gerak Brown pada protoplasma kecepatannya tergantung pada besarnya partikel dan suhu protoplasma.
2.      Gerak siklosis (cyclosis) dan amoeboid. Oleh karena matrik sitoplasma dapat bersifat agak kental maka pada matrik sitoplasma ada gerakan. Gerakan di dalam matrik sitoplasma ini disebut gerakan siklosis (terjadi pada saat matrik dalam fase sol dan terjadinya gerakan ini karena pengaruh tekanan hidrostatik, suhu, pH dan viskositas. Bergeraknya kromosom, sentriol, mitokondria, lisosom, dsb disebabkan gerakan sikolsis. Gerakan amoeboid terbentuk pada gerak siklosis. Gerak amoeboid terjadi pada protozoa, leukosit, dsb. Pada gerakan amoeboid, terjadi perubahan bentuk sel. Penonjolan sitoplasma ini disebut pseudopodia.
3.      Matriks sitoplasma yang cair memiliki tegangan permukaaan. Matriks protein dan lemak memiliki ketegangan permukaan yang kurang karenanya membentuk membran plasma, sedangkan bahan-bahan kimia misalnya garam NaCl tegangan permukaannya tinggi akibatnya NaCl menempati bagian yang lebih dalam pada matrik sitoplasma

Protoplasma merupakan sistem larutan. Ada tiga macam sistem larutan:
  • Solusi : bila dalam larutan diameter zat terlarutnya < 0,0001 mm
  • Suspensi : bila dalam larutan diameter zat terlarutnya > 0,1 mm
  • Koloid : bila dalam larutan diameter zat terlarutnya antara 0,001 mm sampai 0,1 mm
Bagian yang terbesar dari protoplasma adalah sistem koloid. Sehubungan dengan hal itu protoplasma dapat mengalami:
  • perubahan kekentalan koloid sol ke gel dan sebaliknya. Bila kadar air tinggi koloid bersifat sol, dan bila kadar air rendah koloid bersifat gel.
  • mengalami gerak Brown, suatu gerak acak molekul dalam koloid yang dipengaruhi oleh muatan listrik, berat jenis, dan suhu.
  • mengalami efek Tyndall, suatu proses pemendaran cahaya bila suatu koloid dikenai seberkas sinar.
Contoh efek Tyndall. Tabung kiri berwarna kuning adalah larutan, sedang sebelah kanan adalah koloid. Perhatikan bahwa seberkas cahaya akan memendar bila dilewatkan pada suatu larutan koloid.
                              
SIFAT KIMIA PROTOPLASMA
  • Protoplasma terdiri dari unsur-unsur :
1.Unsur Makro : C (10,5%), H (10,8%), O (76,0%), N (2,5%), P (0,03%), K (0,03%), S (0,02%), Cl (0,01%)
2.Unsur Mikro : Ma (0,002%), Na (0,004%), Fe (0,001%)
3.Ultra struktur : Cu, Mn, Mo, B, Si
  • Senyawa penyusun protoplasma
Penyusun protoplasma yang berjumlah besar yaitu :
1.Air                                  78,3%
2.Protein                            15,2%
3.Lipida                             4,8%
4.Karbohidrat                    1,4%

Jumlah masing-masing senyawa tersebut bervariasi tergantung dari jenis dan umur sel.
Komponen anorganik
    AIR
  • Di dalam sel, air terdapat dalam dua bentuk,
  • Dua bentuk itu yaitu bentuk bebas dan bentuk terikat.
  • Air dalam bentuk bebas mencakup 95% dari total air di dalam sel.
  • Umumnya air berperan sebagai pelarut dan sebagai medium dispersi sistem koloid. Air dalam bentuk terikat mencakup 4-5% dari total air di dalam sel
  • Kandungan air pada berbagai jenis sel bervariasi diantara tipe sel yang berbeda.
  • Kandungan air (persen dari berat basah total) pada hati tikus 6—72%, otot rangka tikus 76% , telur bintang laut 77%, E. coli 73%, dan biji jagung 13% tentu berbeda beda karena lingkungan dan perannya
  • Air merupakan medium tempat berlangsungnya transpor nutrien, reaksi-reaksi enzimatis metabolisme sel dan transpor energi kimia
  • Di dalam sel hidup, kebanyakan senyawa biokimia dan sebahagian besar dari reaksi-reaksinya berlangsung dalam lingkungan cair.
  • Air berperan aktif dalam banyak reaksi biokimia dan merupakan penentu penting dari sifat-sifat makromolekul seperti protein
  • Karena stryktur Air mempunyai produk ionisasinya seperti ion O+ dan H maka sangat mempengaruhi berbagai sifat komponen penting sel seperti enzim, protein, asam nukleat, dan lipida.
  • Hal yang sering muncul sebagai contoh, aktivitas katalitik enzim sangat tergantung pada konsentrasi ion H+ dan OH-
  • Karena itulah , semua aspek dari struktur dan fungsi sel harus beradaptasi dengan sifat-sifat fisik dan kimia air.
Dari uraian di atas, dapat disimpulkan bahwa air merupakan komponen sel yang dominan dan berfungsi untuk :
  1. Pelarut berbagai zat organik dan anorganik, misalnya berbagai jenis ion-ion, glukosa, sukrosa, asam amino, serta berbagai jenis vitamin.
  2. Bahan pengsuspensi zat-zat organik dengan molekul besar seperti protein, lemak, dan pati. Dalam hal tersebut, air merupakan medium dispersi dari sistem koloid protoplasma.
  3. Air merupakan media transpor berbagai zat yang terlarut atau yang tersuspensi untuk berdifusi atau bergerak dari suatu bagian sel ke bagian sel yang lain.
  4. Air merupakan media berbagai proses reaksi-reaksi enzimatis yang berlangsung di dalam sel.
  5. Air digunakan untuk mengabsorbsi panas dan mencegah perubahan temperatur yang drastis atau mendadak di dalam sel.
  6. Air sebagai bahan baku untuk reaksi hidrolisis dan sintesis karbohidat . misal dalam fotosintesis

  • Air mempunyai titik lebur, titik didih dan panas penguapan yang lebih tinggi dibandingkan dengan hampir semua cairan.
  • Kenyataan ini menunjukkan adanya gaya tarik yang kuat diantara molekul-molekul air yang berdekatan yang memberikan air gaya kohesi internal yang tinggi.
  • Sebagai contoh, panas penguapan merupakan ukuran langsung dari jumlah energi yang dibutuhkan untuk mengalahkan gaya tarik menarik diantara molekul air yang berdekatan, sehingga molekul tersebut dapat saling berpisah dan masuk ke dalam fase gas.

Tabel Titik lebur, titik didih dan panas penguapan air dan beberapa pelarut lainnya (Lehninger, 1988).
  • Besarnya daya tarik antara dua molekul air yang berdekatan disebabkan karena setiap atom hidrogen menggunakan sepasang elektron secara bersama-sama dengan atom oksigen
  • Hal inilah yang menyebabkan atom molekul air berbentuk huruf V atau tetrahedral.
  • Sisi oksigen yang berhadapan dengan dua hidrogen relatif kaya akan elektron, sedangkan pada sisi lainnya, inti hidrogen yang relatif tidak ditutupi membentuk daerah dengan muatan positif sehingga dikatakan bahwa molekul air bersifat dipolar atau dwikutub (Mayes, 1988; Lehninger, 1988) karena pemisahan muatan tersebut,
maka dua molekul air dapat tertarik satu dengan yang lainnya oleh gaya elek-trostatik diantara muatan negatif sebagian pada atom oksigen dari suatu molekul air dan muatan positif sebagian pada atom hidrogen dari molekul air yang lain. Jenis interaksi elektrostatik ini disebut ikatan hidrogen.
  • Ikatan hidrogen segera terbentuk antara atom yang bersifat elektronegatif, biasanya atom oksigen atau nitrogen, dan suatu atom hidrogen yang berikatan kovalen dengan atom elektronegatif lainnya pada molekul yang sama atau molekul lain.
  • Atom hidrogen yang berikatan dengan atom elektronegatif kuat seperti oksigen cenderung mempunyai muatan positif kuat sebagian.
  • Akan tetapi, atom hidrogen yang berikatan kovalen dengan atom karbon yang tidak bersifat elektronegatif tidak berpartisipasi dalam pembentukan ikatan hidrogen.

    Garam-garam Mineral
  • Kandungan garam-garam mineral pada berbagai tipe sel sangat bervariasi
  • Di dalam sel, garam-garam mineral dapat mengalami disosiasi menjadi anion dan kation.
  • Bentuk-bentuk anion dan kation tersebut dinamakan ion.
  • Ion-ion dapat terlarut di dalam cairan sel atau terikat secara khusus pada molekul-molekul lain seperti protein dan lipida.
  • Secara umum, garam-garam mineral memiliki dua fungsi yaitu :
  1. Fungsi osmosis, dalam arti bahwa konsentrasi total garam-garam terlarut berpengaruh terhadap pelaluan air melintasi membran sel
  2. Fungsi yang lebih spesifik, yaitu peran seluler setiap ion terhadap struktur dan fungsi dari partikel-partikel seluler dan makromolekul.
  • Berbagai jenis garam-garam mineral sangat penting untuk kelangsungan aktivitas metabolisme sel, misal-nya ion Na+ dan K+,
  • ion Na+ dan K+, berperan dalam memelihara tekanan osmosis dan keseimbangan asam basa cairan sel.
  • Retensi ion-ion menghasilkan peningkatan tekanan osmosis sebagai akibat masuknya air ke dalam sel.
  • Beberapaion-ion anorganik berperan sebagai kofaktor dalam aktivitas enzim, misalnya ion magnesium , ferrum
  • Fosfat anorganik digunakan dalam sintesis ATP yang mengsuplai energi kimia untuk proses kehidupan dari sel melalui proses fosforilasi oksidatif.
  • Ion-ion kalsium dijumpai dalam sirkulasi darah dan di dalam sel.
  • Di dalam tulang, ion-ion kalsium berkombinasi dengan ion-ion fosfat dan karbonat membentuk kristalin.
  • Fosfat dijumpai di dalam darah dan di dalam cairan jaringan sebagai ion-ion bebas, tetapi fosfat di dalam tubuh banyak terikat dalam bentuk fosfolipida, nukleotida, fosfoprotein, dan gula-gula terfosforilasi (De Robertis et al., 1975).
  • Di dalam sel juga terkandung berbagai jenis gas yang berasal dari lingkungan atau dihasilkan oleh metabolisme sel.
  • Beberapa gas yang terdapat di atmosfer dapat masuk ke dalam sel misalnya gas oksigen (O2), karbon dioksida (CO2), dan gas nitrogen (N2).
  • Di dalam sel, oksigen berperan untuk mengoksidasi bahan-bahan makanan.
  • Karbon dioksida selain berasal dari lingkungan luar, juga dihasilkan dalam oksidasi bahan makanan sebagai hasil sampingan.
  • CO2 dapat bereaksi dengan air membentuk asam karbonat yang selanjutnya mengalami disosiasi membentuk ion hidrogen dan bikarbonat dengan reaksi sebagai berikut :

Ø  C6H12O6 + 6 CO2 --------> 6 H2O + 6 CO2 + Energi
Ø  CO2 + H2O -------> H2CO3
Ø  H2CO3 ---------> H+ + HCO3-

  • Umumnya karbon dioksida di dalam sel berada dalam bentuk bikarbonat atau karbonat

v Gas
Selain terkandung di udara seperti O2, N2, CO2, terdapat juga di dalam protoplasma, seperti :
1.Oksigen : berfungsi untuk metabolisme
2.N2 : merupakan senyawa yang inert dan tidak berperan dalam metabolisme
3.CO2 : ditemukan pada hampir semua sel sebagai hasil metabolisme oksidatif, yaitu   sebagai hasil respirasi yang akan digunakan kembali dalam proses fotosintesis
Komponen Organik
  • Komponen-komponen organik sel terdiri atas protein, lipid, karbohidrat, dan beberapa komponen-komponen spesifik lainnya seperti enzim, vitamin, dan hormon.
  • Lebih kurang 10-20% isi sel terdiri atas protein.
  • Protein merupakan makromolekul dengan berat molekul berkisar antara 10.000-10.000.000.
  • Sedangkan karbohidrat di dalam sel kurang lebih 1% dan umumnya dalam bentuk monosakarida, disakarida, dan oligosakarida
  • Lipida berkisar 2-3%.
  • Masing-masing komponen organik sel tersebut akan dibahas secara terpisah pada uraian selanjutnya.

Protein
  • Protein adalah makromolekul yang terdiri atas asam-asam a-amino yang saling berikatan dengan ikatan kovalen diantara gugus a-karboksil asam amino dengan gugus a-amino dari asam amino yang lain.
  • Ikatan di antara asam amino disebut ikatan peptida.
  • Beberapa unit asam amino yang berikatan dengan ikatan peptida disebut polipeptida.
  • Molekul protein dapat terdiri atas satu atau sejumlah rantai polipeptida dan setiap rantai dapat terdiri atas ratusan hingga jutaan residu asam amino
Klasifikasi
Hingga saat ini belum ada klasifikasi protein yang secara umum memuaskan.
Klasifikasi protein yang menonjol didasarkan pada antara lain:
  1. Kelarutan
  2. Bentuk keseluruhan
  3. Peranan biologis
Pembagian protein juga dapat dilakukan berdasarkan fungsi dan strukturnya.
Berdasarkan fungsinya, protein diklasifikasikan menjadi
  1. Protein enzim, berperan dalam mempercepat reaksi-reaksi biokimia,
  2. Protein sruktural, membentuk struktur-struktur biologis,
  3. Protein transpor, berperan sebagai pengangkut subtansi-subtansi penting,
  4. Protein pertahanan, melindungi tubuh dari invasi benda-benda asing.
Berdasarkan strukturnya, protein diklasifikasikan menjadi:
  1. Protein globular, memiliki pelipatan-pelipatan yang kompleks, struktur tertier dengan bentuk yang tidak teratur.
  2. Protein serabut ( Protein fibrosa ) memanjang, lipatan sederhana,umum dijumpai pada protein struktural.
Dalam uraian berikut ini hanya dibahas klasifikasi berdasarkan bentuk dan peranan biologisnya.
Berdasarkan bentuknya, protein dibagi menjadi :
  1. Protein globular Rantai polipeptida mengandung banyak lipatan dan berbelit. Rasio aksial kurang dari 10, misalnya insulin, albumin, globulin plasma, dan kebanyakan enzim.
  2. Protein fibrosa Rantai polipeptida atau kelompok rantai yang membelit dalam bentuk spiral atau heliks, dan dihubungkan oleh ikatan disulfida dan hidrogen.
  • Rasio aksial lebih besar dari 10, misalnya keratin dan miosin

Ikatan-ikatan pada Struktur Protein
Struktur protein umumnya dipertahankan oleh dua ikatan sangat kuat yaitu :
  1. ikatan peptida
  2. ikatan disulfida;
  3. ikatan yang lemah, yaitu ikatan hidrogen, interaksi hidrofobik dan interaksi elektrostatif.
Ikatan peptida
  • Ikatan peptida adalah ikatan yang menghubungkan atom a-karboksil dari suatu asam amino dan atom a nitrogen dari asam amino yang lain
  • Peptida yang dibentuk oleh dua molekul asam amino disebut dipeptida
  • Bila dibentuk oleh 3 molekul asam amino disebut tripeptida
  • Bila dibentuk oleh banyak molekul asam amino disebut polipeptida.
Ikatan disulfida
  • Terbentuk antara 2 residu sistein yang saling berhubungan 2 bagian rantai polipetida melalui residu sistein.


Ikatan hidrogen
  • Terbentuk antara gugus NH- atau -OH dan gugus C=O dalam ikatan peptida atau -COO- dalam gugus R, misalnya dua peptida mungkin membentuk ikatan hidrogen.

Interaksi hidrofobik
  • Rantai samping non polar asam amino netral pada protein cenderung bersekutu.
Interaksi elektrostatik
  • Merupakan ikatan garam antara gugus yang bermuatan berlawanan pada rantai samping asam amino.
Sifat-sifat Protein
  1. Membentuk ion Protein dalam air mampu membentuk ion + dan -, dalam suasana asam membentuk ion positif dan dalam suasana basa membentuk ion negatif.
  2. Denaturasi Denaturasi adalah perubahan konformasi alamiah menjadi suatu konformasi yang tidak menentu. Hal ini dapat terjadi karena terjadinya perubahan suhu, pH, atau terjadinya suatu reaksi dengan senyawa-senyawa lain misalnya ion-ion logam.

Asam Amino
  • Asam amino adalah asam karboksilat yang mempunyai gugus amino. Asam amino yang terdapat sebagai komponen protein mempunyai gugus NH2 pada atom karbon a dari posisi gugus -COOH.
  • Atom karbon a dari asam amino kecuali glisin masing-masing dihubungkan pada empat gugus kimia yang berlainan
  • Sehingga atom karbon a bersifat asimetris. Oleh karena itu, molekul asam amino mempunyai dua konfigurasi yaitu D dan L.
  • Molekul asam amino dikatakan mempunyai konfigurasi L, apabila gugus NH2 di sebelah kiri atom karbon
  • Bila gugus NH2 di sebelah kanan atom karbon , maka asam amino tersebut mempunyai konfigurasi D.



Struktur umum asam amino adalah:

Klasifikasi asam amino didasarkan atas:
  • pembentukannya di dalam tubuh dan strukturnya.
Klasifikasi asam amino berdasarkan pembentukannya di dalam tubuh ditunjukkan pada tabel
,

  • Asam amino esensial adalah asam amino yang tidak dapat dibuat dalam tubuh.
  • Sedangkan asam amino non esensial adalah asam amino yang dapat dibuat dalam tubuh.


Berdasarkan strukturnya, asam amino dikelompokkan menjadi 7 yaitu asam amino dengan rantai samping yang :
  1. Merupakan rantai karbon yang alifatik, misalnya glisin, alanin, valin, leusin dan isoleusin.
  2. Mengandung gugus hidroksil, misalnya serin dan threonin
  3. Mengandung atom belerang, misalnya sistein, dan metionin
  4. Mengandung gugus asam atau amidanya, misalnya asam aspartat, aspargin, asam glutamate, dan glutamine.
  5. Mengandung gugus basa, misalnya arginin, lisin, hidroksilisin dan histidin
  6. Mengandung cincin aromatic, misalnya fenilalanin, tirosin dan triptofan.
  7. Membentuk ikatan dengan atom N pada gugus amino, misalnya prolin dan hidroksi prolinUraian klasifikasi asam amino berdasarkan strukturnya diuraikan lebih detail pada pembahasan berikut.
Beberapa rumus kimia asam amino adalah sebagai berikut:
Karbohidrat
  • Molekul karbohidrat adalah substansi yang terdiri atas atom-atom C, H, dan O.
  • Perbandingan antara molekul H dan O adalah 2:1.
  • Jadi memiliki rasio yang sama dengan molekul air (H2O), misalnya:
  1. Ribosa = C6H10O5
  2. Glukosa = C6H12O6
  3. Sukrosa = C12H24O11
Rumus empiris dari karbohidrat adalah Cn(H2O)n.
  • Dengan dasar perbandingan tersebut, orang pada mulanya berkesimpulan bahwa dalam karbohidrat terdapat air, sehingga digunakan kata karbohidrat yang
berasal dari kata karbon dan hidrat atau air
  • Karbohidrat sering disebut sakarida.
  • Ada beberapa senyawa yang memiliki rumus empiris seperti karbohidrat tetapi bukan karbohidrat, misalnya C2H4O2 (asam asetat), CH2O (formaldehida).
  • Dengan demikian, senyawa yang termasuk karbohidrat tidak hanya ditinjau dari rumus empirisnya saja, tetapi yang penting adalah rumus strukturnya.
  • Dari rumus struktur, akan terlihat bahwa ada gugus fungsi penting yang terdapat pada molekul karbohidrat.
  • Gugus fungsi itulah yang menentukan sifat senyawa tersebut.
  • Berdasarkan gugus molekul yang ada pada karbohidrat, maka karbohidrat dapat didefenisikan secara kimia sebagai plohidroksialdehid atau polihidroksiketon serta yang menghasilkannya pada proses hidrolisis.
  • Berbagai senyawa yang termasuk kelompok karbohidrat mempunyai molekul yang berbeda-beda ukurannya, yaitu dari senyawa sederhana dengan berat molekul ren-dah hingga berat molekul besar.
  • Berbagai senyawa terse-but dapat dibagi dalam empat golongan, yaitu
  1. monosakarida
  2. disakarida/ oligosakarida
  3. polisakarida.



Monosakarida
  • Monosakarida sering disebut gula sederhana (simple sugars) adalah karbohidrat yang tidak dapat dihidrolisis menjadi bentuk yang lebih sederhana lagi.
  • Molekulnya hanya terdiri atas beberapa atom karbon saja.
  • Monosakarida dapat dikelompokkan berdasarkan kandungan atom karbonnya, yaitu triosa, tetrosa, pentosa, dan heksosa atau heptosa.
Misalnya :
  1. Triosa = (C3H6O3)
  2. Tetrosa = (C4H8O4)
  3. Pentosa = (C5H10O5)
  4. Heksosa = (C6H12O6)
  • Monosakarida atau gula sederhana hanya terdiri atas satu unit polihidroksialdehida atau keton atau hanya terdiri atas satu molekul sakarida.
  • Monosakarida yang umum dikenal mempunyai rumus empiris (CH2O)n, dimana n = 3 atau jumlah yang lebih besar lainnya.
  • Kerangka monosakarida adalah rantai karbon berikatan tunggal yang tidak bercabang.
  • Satu diantara atom karbon berikatan ganda terhadap suatu atom oksigen membentuk gugus karbonil, masing-masing atom karbon lainnya berikatan dengan gugus hidroksil.
  • Jika gugus karbonil berada pada ujung rantai karbon, monosakarida tersebut adalah suatu aldosa, dan jika gugus karbonil berada pada posisi lain, monosakarida tersebut adalah suatu ketosa.
  • Berbagai jenis monosakarida aldosa dan ketosa ditunjukkan pada gambar





Disakarida.
  • Disakarida terdiri atas dua monosakarida yang berikatan kovalen terhadap sesamanya.
  • Pada kebanyakan disakarida, ikatan kimia yang menggabungkan kedua unit monosakarida disebut ikatan glikosida, dan dibentuk jika gugus hidroksil pada salah satu gula bereaksi dengan karbon pada gula yang kedua.
  • Disakarida menghasilkan dua molekul monosakarida yang sama atau berbeda bila mengalami hidrolisis, misalnya:
  1. Maltosa -------> Glukosa + Glukosa
  2. Laktosa -------> Glukosa + Galaktosa
  3. Sukrosa -------> Glukosa + Fruktosa

Oligosakarida menghasilkan 3-6 molekul monosakarida bila mengalami hidrolisis, misalnya :
  1. Maltotriosa -------> 3 residu Glukosa
  2. Rafinosa ---------> Galaktosa+ galaktosa + Fruktosa
  3. Stakiosa ---------> Galaktosa + Glukosa + Fruktosa


Polisakarida
  • Polisakarida atau glikan tersusun atas unit-unit gula yang panjang.
  • Polisakarida dapat dibagi menjadi dua kelas utama yaitu homopolisakarida dan heteropolisakarida.
  • Homopolisakarida yang mengalami hidrolisis hanya menghasilkan satu jenis monosakarida, sedangkan heteropolisakarida bila mengalami hidrolisis sempurna menghasilkan lebih dari satu jenis monosakarida.



BAB III
PENUTUP


Protoplasma merupakan bagian yang paling penting di dalam sel,karena protoplasma itu berfungsi sebagai Elemen utama sebuah sel. Protoplasma bersifat pekat (kental), jernih (terang) dan koloid polifasis.

Protoplasma terdri dari zat yang menyusunnya seperti:zat organik maupun nonorganik
Seperti air,garam mineral dan karbohidrat,protein dan juga lipid.
Didalam protoplasma terjadi juga
Protoplasma terdiri dari unsur-unsur :
v  Unsur Makro : C (10,5%), H (10,8%), O (76,0%), N (2,5%), P (0,03%), K (0,03%), S (0,02%), Cl (0,01%)
v  Unsur Mikro : Ma (0,002%), Na (0,004%), Fe (0,001%)
v  Ultra struktur : Cu, Mn
Protoplasma pada semua sel terdiri atas dua komponen utama, yaitu air dan komponen anorganik / komponen organik.Dari reaksi reaksi kimia yang terjadi antara senyawa senyawa inilah yang mengakibatkan adanya gejala gejala kehidupan di protoplasma.
Gejala kehidupan itu misalnya metabolisme , tumbuh , bergerak , berkembang biak , sirkulasi zat dllMisalnya yang mudah respirasi , fotosintesis , sintesis lemak..Komponen-komponen anorganik terdiri atas air, garam-garam mineral, gas oksigen, karbon dioksida, nitrogen, dan amonia,Komponen organik terutama terdiri atas karbohidrat, lipida, protein, dan beberapa komponen-komponen spesifik seperti enzim, vitamin, dan hormon








DAFTAR PUSTAKA


v  Jhon w.kimball.1987. biologi .edisi ke 5.jilid 2.erlangga : Jakarta
v  http://biologigonz.blogspot.com/2009/12/penyusun-protoplasma-sel.html
v  http://www.scribd.com/doc/31920161/SIFAT-SIFAT-KIMIA-PROTOPLASMA
v  http://bioselscience.blogspot.com/2010/04/sifat-fisika-kimiawi-protoplasma.html